

PRODUCT DATA SHEET

Mold polishing

Hand polishing by skilled polisher 85min. versus Automated polishing by XEBEC Brush™ 1.5min

microinches micrometer METRIC $1 \mu m =$ 39.4 μin CONVERSION

NAK steel polishing time trial

Experiment setup

The polishing was conducted using identical conditions for 3 skilled polishers (target material for polishing & tools for polishing).

Material

NAK80 steel 40x40mm Polishing flat surface (≒ X40CrMoV51, Prehardened Steel)

Before polishing (After milling process)

Surface roughness: Ra 0.34µm

After polishing process

Surface roughness: Ra 0.02µm

Automated polishing by XEBEC Brush™

Material

NAK steel 70x70mm Polishing half area of pocket processed surface (= X40CrMoV51, Prehardened Steel)

Before polishing (After ball end milling process)

Surface roughness: Ra 1.4µm, Rz 6.1µm

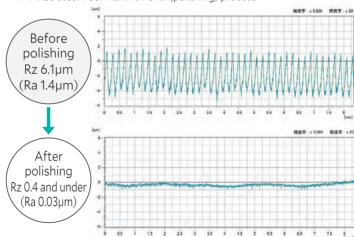
After polishing process

Surface roughness: Ra 0.029µm, Rz 0.337µm

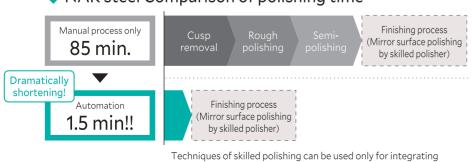
Tool used

XEBEC Brush™ Surface A32-CB25M(Blue) A11-CB25M(Red)

Processing parameters


Rotation speed: 5000min⁻¹ Feed: 500mm/min Depth of cut: (Blue)0.3mm

(Red)0.2mm

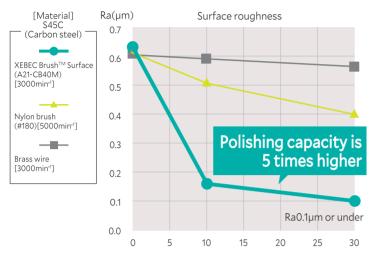

Automated polishing by XEBEC Brush™

NAK55 steel Tool mark removal (polishing) process

Proposal for major shortening of prosessing by means of automated die and mold polishing

NAK steel Comparison of polishing time

the final stages in the process of polishing mirror surfaces, etc.


	Merits	Demerits
Hand polishing	① Curved surfaces and complex shapes can be dealt with flexibly.	It takes time (If the worker is not skilled, processing time is even longer.)
		Things, such as the competence levels of the workers, yielded quality and processing time differences.
Auto-	Automated deburring and polishing process right after cutting process in the same machining. (Cusp removal~semi-polishing)	Programming is necessary for complex shapes and curved surfaces. (OK if it can be made to follow the shape.)
mated polishing	Possible to shorten polishing time dramatically. Automation resulted in stable quality, eliminating quality variations due to manual processing.	It is unsuitable for critical edge requirement. (Deb- urring effects of approx. 0.1mm)

PRODUCT DATA SHEET

METRIC CONVERSION micrometer $1 \mu m =$ microinches 39.4 μin

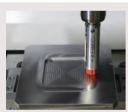
Comparison of grinding capacity with other companies' products

- □ XEBEC BrushTM Surface / Improved approx. 0.5µm in 10sec.
- □ Nylon brush / Improved approx. 0.1µm in 10sec.
- ☐ Brass wire / No improvement

▶ Best surface roughness Ra=0.029µm

The superfine fibers, measured in micrometers, can improve surface roughness in a short time.

Before polishing $Rz = 6.1 \mu m$ $Ra = 1.4 \mu m$


After polishing $Rz = 0.337 \mu m$ $Ra = 0.029 \mu m$

- ☐ Material / NAK55 steel
- Tool used / A32-CB25M → A11-CB25M \$5000 / F500 / D0.3→0.2

XEBEC Brush[™] Polishing Applications

Pocket part flat surface polishing : • Curved surface polishing

After end milling Rz 1.56µm

Ra 0.21µm Dim. 100×100 (Pocket Part)

After polishing

Rz 0.35µm Ra 0.03µm

Material

SUS304/HRC10

Tool used

A32-CB25M, A11-CB25M

Rotational speed

(A32) 3200min⁻¹, (A11)4000min⁻¹

(A32) 1500mm/min, (A11) 6000mm/min


Depth of cut

(A32) 0.1mm, (A11) 0.3mm

After ball end milling

Rz 48µm Ra 15µm Dim. 70×70

After polishing

Rz 0.98µm Ra 0.12µm

Material

SUS304/HRC10

Tool used

A32-CB25M, A11-CB25M

Rotational speed

5000min⁻¹

(A32) 1500mm/min, (A11) 6000mm/min

Depth of cut

0.3mm

Hardened steel mirror polishing

After end milling

Rz 1.99µm Ra 0.25µm Dim. 80×80

After polishing

Rz 0.52µm Ra 0.05µm

Material

SKD11/HRC62 (≒X165CrMoV12)

Tool used

A32-CB100M, A11-CB100M

Rotational speed

1200min⁻¹

Feed

600mm/min

Depth of cut

0.2mm